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IMAGE PRIVACY PREDICTION & PRIOR WORKS

I An image Privacy Prediction system predicts the privacy setting for images
and avoid a possible loss of users’ privacy.

I Prior works explored models based on user tags and image content features
such as SIFT (Scale Invariant Feature Transform) and RGB (Red Green
Blue) [Zerr et al., 2012, Squicciarini et al., 2014] for privacy prediction.

I These studies found that users tags are informative and perform better than
image content features such as SIFT.

I Recently, due to the success of object recognition from images using CNN
[Krizhevsky et al., 2012], researchers started to investigate learning models
of image privacy based on CNN
[Tran et al., 2016, Tonge and Caragea, 2016].

I Tran et al. proposed privacy framework that combines features obtained
from the two CNNs: one that extracts convolutional features, and another
that derives object features.

MY CONTRIBUTIONS

I I aim to solve the problem of identifying private content for online image
sharing.

I I derive features from the multi-modal information of the image that can
adequately understand the image content and predict the prevalent privacy
settings for uploaded images.
I Since identifying sensitive content is inherently difficult because it requires the system

to have an in-depth understanding of the visual content of the image.

I I propose to derive image tags, and visual content features by leveraging
CNN architectures which are used in conjunction with machine learning
classifiers to identify sensitive content accurately.

I I show empirically on a real world Flickr dataset that the deep features
outperform:
I Existing state-of-the-art models for image privacy prediction.
I A rule-based learner that predicts an image as private if it contains people’s faces.

DATASETS

I I evaluate the proposed features on a subset of Flickr images sampled from
the PicAlert dataset [Zerr et al., 2012].

I PicAlert consists of Flickr images on various subjects, which are manually
labeled as public or private by external viewers.

I I consider 32000 images randomly selected from PicAlert for the privacy
prediction task.

I The public and private images are in the ratio of 3:1.

(a) Private (b) Public

Figure: Examples of private and public images from PicAlert dataset.

FEATURES FOR IMAGE PRIVACY PREDICTION

The features used in the classification are described below.

I Deep features
I Given the strengths of deeper CNN architectures for object recognition,

features derived from the deep layers of the very deep CNNs provide finer
clues for the image privacy prediction task.

I I employ very deep CNN architectures, i.e., ResNet, GoogLeNet, VGG and
AlexNet to derive features from the various layers of these CNNs.

I Semantic features
I I believe that scene features can contribute along with object features to

learn privacy characteristics of a given image, as they can help provide clues
into what the image owners intended to show through the photo.

I I employ two types of semantic features for privacy prediction: (1) objects
features; and (2) scene features.

I Privacy-aware User Tags
I I propose privacy-aware tag recommendation algorithm that aims at

improving the quality of user annotations while also preserving the images’
original sharing settings.

I These improved set of tags can improve the privacy prediction performance.

I Multimodal feature fusion
I Finally, I propose an algorithm to combine the strengths of tags features,

semantic (object and scene) features and privacy-specific features to
improve privacy prediction. This work is currently under development.

DEEP FEATURES
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Figure: Deep Features: CNNs are used to extract deep visual features and deep image tags for
input images.

FEATURE CLASSIFICATION
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Figure: Feature Classification (Deep Features and Deep Tags): The features from the
fully-connected (fc) layers and deep tags are used to predict the class of an image as public or
private using SVM.

SEMANTIC FEATURES
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Figure: Object, Scene and User tags for the input image.

PRIVACY-AWARE USER TAGS

I I posit that visually similar images can possess very different sets of
user-input tags if these images have different privacy orientations.

I Intuitively, user-input tags provide users’ intention behind sharing the image
which can vary based on whether the image to be shared with everyone on
the web or not.
I Yet, prior image tagging systems failed to consider the privacy aspect of an image.

I I present a collaborative filtering based approach to privacy-aware image
tagging.

(a) Private, Stylish, Elegant (b) Public, Parisi, Sabrina
Corporate, Style, Pretty News, Celebrity, Woman
Fashion, Girl, Woman Famous, Girl, Hollywood

Figure: Anecdotal evidence for visually similar images with privacy-aware user tags.

IMPORTANT LINKS

https://goo.gl/HFRmwU

EXPERIMENTS AND RESULTS

WHAT IS THE IMPACT OF THE NETWORK ARCHITECTURE ON THE
PRIVACY PREDICTION?

Features Acc % F1 Prec Re
AlexNet

fc6 82.29 0.82 0.819 0.823
fc7 82.97 0.827 0.825 0.83
fc8 85.51 0.849 0.849 0.855
prob-A 82.76 0.815 0.816 0.828

GoogLeNet
pool5 86.41 0.861 0.86 0.864
loss3 86.42 0.861 0.86 0.864
prob-G 82.66 0.815 0.816 0.827

VGG
fc6-V 83.85 0.837 0.836 0.839
fc7-V 84.43 0.843 0.842 0.844
fc8-V 86.72 0.864 0.863 0.867
prob-V 81.72 0.801 0.804 0.817

ResNet
fc-R 87.58 0.872 0.872 0.876
prob-R 80.6 0.784 0.789 0.806

Table: Comparison of pre-trained architectures AlexNet, GoogLeNet, VGG and ResNet.

HOW DO DEEPPRIVATE FEATURES PERFORM AS COMPARED TO
BASELINES?

Features Acc % F1 Prec Re
Deep features

fc-R 87.58 0.872 0.872 0.876
Hierarchical Deep Features [Tran et al., 2016]

PCNH 83.13 0.824 0.823 0.831
AlexNet Deep Features [Tonge and Caragea, 2016]

fc8 85.51 0.849 0.849 0.855
SIFT/GIST [Zerr et al., 2012, Squicciarini et al., 2014]

SIFT+GIST 72.67 0.704 0.691 0.727
Rule-based models

Rule-1 77.35 0.683 0.694 0.672
Rule-2 77.93 0.673 0.704 0.644

Table: Deep features vs. Baselines.

WOULD SCENE-CENTRIC TAGS OBTAINED FROM THE VISUAL CONTENT
BRING ADDITIONAL INFORMATION TO IMPROVE PRIVACY PREDICTION?

Features Acc % F1 Precision Recall #IncPred
UT 81.73 0.789 0.803 0.817 -

k = 2
UT+ST 82.26 0.797 0.81 0.823 293
UT+OT 83.09 0.812 0.819 0.831 477
UT+ST+OT 83.59 0.819 0.825 0.836 587

k = 10
UT+ST 83.21 0.814 0.821 0.832 503
UT+OT 84.35 0.833 0.834 0.843 755
UT+ST+OT 84.80 0.841 0.84 0.848 854

Table: Object Tags vs. Scene Tags. The best performance is shown in bold.

TAG ANALYSIS

Rank 1-10 Rank 11-20 Rank 21-30 Rank 31-40 Rank 41-50
people pyjama maillot promontory jersey

wig jammies girl t-shirt mole
portrait sweatshirt suit of clothes foreland groin

bow-tie outdoor ice lolly headland bulwark
neck brace lakeside suit bandeau seawall
groom lakeshore lollipop miniskirt seacoast

bridegroom sun blocker two-piece breakwater indoor
laboratory coat sunscreen tank suit vale stethoscope

hair spray sunglasses bikini hand blower valley
shower cap military uniform swimming cap jetty head

Table: Top 50 highly informative tags.

CONCLUSIONS

I I employ deep features depicting multimodal information of an image
derived through CNN networks to understand the images’ content in-depth
for image privacy classification.

I The results show the remarkable improvements in performance of image
privacy prediction when using deep features as compared to baselines.

I In future, with the help of these features, it would be interesting to explore
learning models for personalized image privacy prediction with varying
degree of sensitivity.
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