Privacy-Aware Tag Recommendation for Image Sharing

Ashwini Tonge¹, Cornelia Caragea¹ and Anna Squicciarini²

¹Kansas State University, ²Pennsylvania State University

IMAGE PRIVACY PREDICTION?

- Rapid increase in social media can cause threat to user's privacy
- Many users are quick to share private images without realizing the consequences of an unwanted disclosure of these images.
- Users rarely change default privacy settings, which could jeopardize their privacy [Zerr et al., 2012].
- Current social networking sites do not assist users in making privacy decisions for images that they share online.
- Image Privacy Prediction predicts privacy setting for images and avoid a possible loss of users' privacy.

PRIOR WORKS

- ▶ Recently, [Squicciarini et al., 2014] and [Zerr et al., 2012] found that user tags are informative for classifying images as *private* or *public*.
- ► [Tonge and Caragea, 2016,

Tonge and Caragea, 2018, Tonge et al., 2018] automatically obtained image tags from the visual content using convolutional neural networks and also showed their performance for privacy prediction.

PRIVACY-AWARE IMAGE TAG RECOMMENDATION

- Our approach draws ideas from collaborative filtering (CF).
- The analogy with conventional CF methods is that images correspond to users and tags correspond to items.
- Base our models on the assumption that privacy-aware similar images possess similar tags Online Image Privacy.
- Images can be represented using two different views or feature types: (1) image visual content and (2) image tags.

ALGORITHM ILLUSTRATION - I

EXPERIMENTS AND RESULTS

COLD START PROBLEM

Features	Acc.%	F1	Precision	Recall
$pool_5(rt)$	75.74	0.743	0.729	0.757
DT(<i>rt</i>)	74.19	0.731	0.725	0.742
vt	74.83	0.743	0.739	0.748
DT	68.54	0.645	0.619	0.685

Table: Visual content-based similarity (k = 10).

PROPOSED APPROACH VS. PRIOR WORKS

Features	Acc.%	F1	Precision	Recall				
#1 0	#1 Original User Tags (Visible Tags)							
vt	74.83	0.743	0.739	0.748				
	#2 Fast	Tag (Pric	or work)					
vt & rt	74.55	0.741	0.738	0.745				
#3 V	isual Cont	ent Simi	ilarity $(T = \phi$)				
<i>vt</i> & <i>rt</i> (5)	75.23	0.741	0.730	0.752				
<i>vt</i> & <i>rt</i> (10)	75.63	0.742	0.727	0.757				
<i>vt</i> & <i>rt</i> (15)	76.71	0.752	0.737	0.768				
<i>vt</i> & <i>rt</i> (20)	76.27	0.747	0.732	0.763				
#4 Tag Similarity $(T \neq \phi)$								
<i>vt</i> & <i>rt</i> (5)	78.20	0.772	0.762	0.783				

Table: Privacy-aware Tag recommendation vs. FastTag.

QUALITY ASSESSMENT OF RECOMMENDED TAGS

#Tags	Gold-standard	User-Study
(r)	P@r	P@r
1	0.177	0.855
2	0.181	0.761
3	0.181	0.755
4	0.172	0.703
5	0.174	0.691
10	0.155	0.633

MOTIVATION

(b) *Public*, Parisi, Sabrina (a) *Private*, Elegant Corporate, Style News, Celebrity Fashion, Girl, Woman Famous, Girl Skirt, Top, Bag, Pretty Woman, Hollywood

Figure: Anecdotal evidence for visually similar images with privacy-aware user tags.

OUR CONTRIBUTIONS

- Present a privacy-aware approach to image tagging.
 - Improve the quality of user tags.
 - Preserving the images original privacy sharing patterns.
- Recommends potential tags for a target image by mining privacy-aware tags from the most similar images.
- Although the user-input tags comprise noise or even some images do not have any tags at all, our approach is able to recommend accurate tags.
- Results show that the predicted tags can exhibit relevant cues for specific privacy settings.

DATASETS

	ALC: NO	Card A Law		and the second s
(1)	(2)	(3)	(4)	(5)
"Cute"	"Cute"	"Cute"	"Cute"	"Cute"
"Doll"	"Toy"	"Happiness"	"Doll"	"Coolcat"
"Toy"	"Doll"	"Eyechips"	"Shop"	"Indoor"

Recommended Tags - "Doll," "Toy," "Coolcat"

Figure: Illustration of the privacy-aware tag recommendation algorithm using an example.

ALGORITHM ILLUSTRATION - II

Candidate	Count	P(t pr	P(t pr	W _t
Tags		= private)	= public)	$s_j = 1$
Doll	3	0.1	0.9	$3 \times 0.9 = 2.7$
Toy	2	0.15	0.85	$2 \times 0.85 = 1.7$
Cute	5	0.7	0.3	$5 \times 0.3 = 1.5$
Coolcat	1	0.0	1.0	$1 \times 1.0 = 1.0$
Shop	1	0.0	1.0	$1 \times 1.0 = 1.0$
Eyechips	1	0.3	0.7	$1 \times 0.7 = 0.7$
Indoor	1	0.6	0.4	$1 \times 0.4 = 0.4$
Happiness	1	0.6	0.4	$1 \times 0.4 = 0.4$

Table: Privacy-aware weighted sum of tag occurrences (K = 5, r = 3).

EXPERIMENTS AND RESULTS

EVALUATION BY PRIVACY PREDICTION

Figure: F1-measure obtained for various parameter values of scoring methods, *k* and *r*.

Table: Gold-standard and User evaluation of recommended tags.

	Visible	Hidden	Recommended Tags
	Beauty	Geisha	People Culture
	Light	Kyoto	Japan Street
	Travel	Japan	Asia Walking
	Couple	Kimono	Geisha
-4	Woman	Traditional	Kimono
	Vintage	Asia	Kyoto
	-	People	Traditional
Figu	e: Image	with recomn	hended tags, $r=10$.

CONCLUSIONS

- Improve the original set of user tags and preserve images privacy.
- Draw ideas from collaborative filtering (CF).
- Although the user-input tags are prone to noise, we were able to integrate them in our approach and recommend accurate tags.
- Simulated the recommendation strategy for newly-posted images, which had no tags attached.
 - Simulated the recommendation strategy for newly-posted images, which had no tags attached.
- Achieved better performance for privacy prediction with recommended tags than user tags.
- Indicate that the suggested tags comply to the images privacy.
- Conducted a user evaluation of recommended tags to inspect the quality of the recommended tags. Results show that the proposed approach is able to recommend highly relevant tags.

- We evaluated our approach on Flickr images sampled from the PiCalert dataset [Zerr et al., 2012].
- PiCalert consists of Flickr images on various subjects, which are manually labeled as *public* or private by external viewers.
- ► The public and private images are in the ratio of 3:1.
- *Private*: Private image discloses sensitive information about a user. E.g., images with self-portraits, family, friends, someone's home, etc.
- ► *Public*: Remaining images are labeled as public.

Dataset	#Total	#Avg.	#min.	#max.	#Pr.	#Pu.
	Images	Tags	Tags	Tags		
(\mathcal{D})	8000	9.73	1	71	2000	6000
DS_1	3689	16.60	11	78	922	2767
DS_2	500	20.70	11	69	125	375

Table: Datasets summary.

Features	Acc. %	F1	Precision	Recall		
vt	74.83	0.743	0.739	0.748		
		k = 4				
<i>vt</i> & <i>rt</i> (5)	77.84	0.766	0.755	0.778		
<i>vt</i> & <i>rt</i> (10)	77.47	0.763	0.752	0.776		
<i>vt</i> & <i>rt</i> (15)	77.31	0.757	0.744	0.771		
<i>vt</i> & <i>rt</i> (20)	76.83	0.754	0.741	0.769		
		k = 5				
<i>vt</i> & <i>rt</i> (5)	77.96	0.769	0.758	0.781		
<i>vt</i> & <i>rt</i> (10)	77.80	0.766	0.755	0.778		
<i>vt</i> & <i>rt</i> (15)	77.60	0.764	0.752	0.776		
<i>vt</i> & <i>rt</i> (20)	77.27	0.760	0.747	0.773		
		k :	= 10			
<i>vt</i> & <i>rt</i> (5)	78.20	0.772	0.762	0.783		
<i>vt</i> & <i>rt</i> (10)	77.80	0.765	0.754	0.777		
<i>vt</i> & <i>rt</i> (15)	77.92	0.767	0.758	0.778		
<i>vt</i> & <i>rt</i> (20)	77.43	0.758	0.745	0.771		

Table: Performance for privacy prediction after adding recommended

- Future directions
 - Multiple sharing needs of the user.
 - Computing images similarity by combining both tags and visual content.

REFERENCES

- Squicciarini, A. C., Caragea, C., and Balakavi, R. (2014). Analyzing images' privacy for the modern web. HT '14, pages 136–147, New York, NY, USA. ACM.
- Tonge, A. and Caragea, C. (2018). On the use of "deep" features for online image sharing. In Companion Proceedings of The Web Conf., pages 1317–1321.
- Tonge, A., Caragea, C., and Squicciarini, A. (2018). Uncovering scene context for predicting privacy of online shared images. In AAAI '18.
- Tonge, A. K. and Caragea, C. (2016). Image privacy prediction using deep features. In AAAI.
- Zerr, S., Siersdorfer, S., Hare, J., and Demidova, E. (2012). Privacy-aware image classification and search. In ACM SIGIR, NY, USA. ACM.

Acknowledgements: This research is supported by a grant from NSF to Cornelia Caragea and Anna Squicciarini.

tags.

https://ashwinitonge.github.io/