Privacy-Aware Tag Recommendation for Image Sharing
Ashwini Tonge, Cornelia Caragea and Anna Squicciarini
1Kansas State University, 2Pennsylvania State University

Image Privacy Prediction?
- Rapid increase in social media can cause threat to user’s privacy.
- Many users are quick to share private images without realizing the consequences of an unwanted disclosure of these images.
- Users rarely change default privacy settings, which could jeopardize their privacy [Zerr et al., 2012].
- Current social networking sites do not assist users in making privacy decisions for images that they share online.
- Image Privacy Prediction predicts privacy setting for images and avoid a possible loss of users’ privacy.

Prior Works
- Recently, [Squicciarini et al., 2014] and [Zerr et al., 2012] found that user tags are informative for classifying images as private or public.
- [Tonge and Caragea, 2016, Tonge and Caragea, 2018, Tonge et al., 2018] automatically obtained image tags from the visual content using convolutional neural networks and also showed their performance for privacy prediction.

Motivation
- (a) Private, Elegant
- (b) Public, Parisi, Sabrina
- Corporate, Style
- Fashion, Girl, Woman, Famous, Girl
- Skirt, Top, Bag, Pretty
- Woman, Hollywood

Our Contributions
- Present a privacy-aware approach to image tagging.
- Improve the quality of user tags.
- Preserving the images original privacy sharing patterns.
- Recommends potential tags for a target image by mining privacy-aware tags from the most similar images.
- Although the user-input tags comprise noise or even some images do not have any tags at all, our approach is able to recommend accurate tags.
- Results show that the predicted tags can exhibit relevant cues for specific privacy settings.

Datasets
- We evaluated our approach on Flickr images sampled from the Picalert dataset [Zerr et al., 2012].
- Picalert consists of Flickr images on various subjects, which are manually labeled as public or private by external viewers.
- The public and private images are in the ratio of 3:1.
- Private: Private image discloses sensitive information about a user, e.g., images with self-portraits, family, friends, someone’s home, etc.
- Public: Remaining images are labeled as public.

Experiments and Results

Algorithm Illustration - I

![Image of privacy-aware tag recommendation algorithm example](image)

Figure: Illustration of the privacy-aware tag recommendation algorithm using an example.

Algorithm Illustration - II

| Candidate Tags | Count | P(e|p) | P(p|e) | P(e|p) * P(p|e) | w_t | P(e) | k=5.1 |
|----------------|-------|-------|-------|-----------------|------|-------|-------|
| Doll | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Toy | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Cute | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Shop | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Eyechips | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Indoor | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |
| Happiness | 0.15 | 0.10 | 0.5 | 0.25 | 0 | 0.85 | 1 |

Table: Privacy-aware weighted sum of tag occurrences (K = 5, r = 3).

Evaluation by Privacy Prediction

![Image of F1-measure for various parameter values of scoring methods, k and r.](image)

Figure: F1-measure obtained for various parameter values of scoring methods, k and r.

References
- Future directions.
 - Multiple sharing needs of the user.
 - Computing images similarity by combining both tags and visual content.

Conclusions
- Improve the original set of user tags and preserve images privacy.
- Draw ideas from collaborative filtering (CF).
- Although the user-input tags are prone to noise, we were able to integrate them in our approach and recommend accurate tags.
- Simulated the recommendation strategy for newly-posted images, which had no tags attached.
- Simulated the recommendation strategy for newly-posted images, which had no tags attached.
- Achieved better performance for privacy prediction with recommended tags than user tags.
- Indicate that the suggested tags comply to the images privacy.

Experimental Results

<table>
<thead>
<tr>
<th>Features</th>
<th>Acc.</th>
<th>P</th>
<th>F</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=1</td>
<td>0.75</td>
<td>0.72</td>
<td>0.75</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>k=2</td>
<td>0.74</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>k=3</td>
<td>0.74</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>k=4</td>
<td>0.74</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>k=5</td>
<td>0.74</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

Table: Performance for privacy prediction after adding recommended tags.